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Results
Alex Hanson*, Allen Tu*, Vasu Singla, Mayuka Jayawardhana, Matthias Zwicker, Tom Goldstein

PUP 3D-GS: Principled Uncertainty Pruning
for 3D Gaussian Splatting

Datasets Methods PSNR ↑ SSIM ↑ LPIPS ↓ FPS ↑ Size (MB) ↓

MipNeRF-360

3D-GS 27.47 0.8123 0.2216 64.07 746.46

LightGaussian 26.28 0.7622 0.3054 162.12 74.65

Ours 26.67 0.7862 0.2719 204.81 74.65

Tanks &
Temples

3D-GS 23.77 0.8458 0.1777 97.86 433.24

LightGaussian 23.08 0.7950 0.2634 329.03 43.33

Ours 22.72 0.8013 0.2441 391.10 43.33

Deep 
Blending

3D-GS 28.98 0.8816 0.2859 66.79 699.19

LightGaussian 28.51 0.8675 0.3292 234.10 69.92

Ours 28.85 0.8810 0.3015 301.43 69.92

Motivation Comparison

When applied to
pretrained 3D-GS models, 

PUP 3D-GS achieves
3.56× FPS and 

10× smaller model sizes
while preserving image quality 

and salient foreground information.
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How can we compress pretrained 
3D Gaussian Splatting (3D-GS) models by 10× 

while preserving image quality?
We introduce a mathematically principled per-Gaussian pruning score and 
an effective pruning pipeline that together yield surprisingly strong results.

Method

Pruning Pipeline
(1) We prune 80% of Gaussians and fine-tune for 5,000 iterations, then
(2) prune 50% of Gaussians and fine-tune for 5,000 more iterations.
In total, we prune 90% of Gaussians from the pretrained model.

PUP 3D-GS retains 
more fine details than 

previous methods 
when pruning 90% of 

Gaussians from 3D-GS.
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Pruning Score
We compute a per-Gaussian pruning score 𝑈! as the log determinant of 
the Hessian of the 𝐿" reconstruction error for Gaussian 𝒢!, where 𝒫#$ is 
the set of all training poses and 𝐼𝒢 𝜙  is the rendered view for pose 𝜙:

We find that the Gaussian mean 𝜇! and scaling 𝑠! parameters produce 
an effective spatial sensitivity pruning score:


